Pré-Publication, Document De Travail Année : 2024

Building confidence in data-driven surrogate transport models for turbulent plasmas

Résumé

Getting fast and reliable predictions of turbulent transport properties is an important challenge in magnetic fusion. Previous research [R. A. Heinonen & P. H. Diamond, Phys. Rev. E 101 061201 (2020)] proposed a data-driven approach using neural networks to predict the particle flux and Reynolds stress in a minimal model of drift-wave turbulence. The present work extends this approach to the interchange instability driven by the magnetic curvature. An assessment of the limits and caveats associated with a data-driven approach based on machine learning regression algorithms is performed -an essential step for scalability toward more complex high-fidelity codes. In particular, a figure of merit is introduced to indicate regions within the parameter space where the neural network outputs can be trusted. Some applications of the data-driven surrogate model are presented. Specifically, predictions are used to gain insight into the vorticity gradient's contribution to the turbulent flux and the antiviscous nature of the Reynolds stress.
Fichier principal
Vignette du fichier
Varennes_surrogate_model_2024_submission.pdf (4.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04855224 , version 1 (24-12-2024)

Identifiants

  • HAL Id : hal-04855224 , version 1

Citer

Robin Varennes, Zhisong S Qu, Youngwoo W Cho, Chenguang Wan, Kunpeng Li, et al.. Building confidence in data-driven surrogate transport models for turbulent plasmas. 2024. ⟨hal-04855224⟩
16 Consultations
30 Téléchargements

Partager

More